基于小波域模糊阈值算法的脉冲星微弱信号消噪
DOI:
CSTR:
作者:
作者单位:

作者简介:

甘伟(1985—):四川人,博士,主要研究方向是信号检测与信号处理

通讯作者:

中图分类号:

TN911

基金项目:


Pulsar Weak Signal De-noising Based on Wavelet Fuzzy Threshold Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    脉冲星辐射信号具有极低的信噪比,传统降噪算法难以在抑制噪声的同时保留细节信息。为此,提出一种模糊阈值小波降噪算法。该算法通过引入模糊理论,建立隶属度函数,计算信号每个采样点的隶属度,再利用小波阈值消噪算法设定门限,将隶属度大于门限的采样值划归为信号,反之为噪声,从而达到降噪的目的。实验结果表明:与小波“db6”和小波“sym4”软阈值消澡算法相比,该算法能有效提高脉冲星辐射信号的信噪比,能保留较多的有用细节信息,避免脉冲累积轮廓过于光滑。

    Abstract:

    Pulsar signal has very low signal to noise ratio and the traditional de-noising algorithm is difficult to suppress the noise while preserving the details. Thus, a Wavelet Fuzzy Threshold de-noising algorithm is proposed. Firstly, the membership functions are set up by introducing the fuzzy theory in the algorithm, the membership grade of each sample is calculated. And then the threshold is set up by using the wavelet threshold de-noising methods, the samples which are larger than the threshold are categorized to the signal, the others to the noise so as to achieve the aim for suppressing the noise and retaining the useful signal. Finally, the experiment results show that, compared to wavelet“db6”and“sym4”soft threshold de-noising methods, the proposed algorithm can achieve higher SNR while keeping more useful details of Pulsar signal.

    参考文献
    相似文献
    引证文献
引用本文

甘伟,袁冰妍.基于小波域模糊阈值算法的脉冲星微弱信号消噪[J].现代导航,2014,5(2):136-140

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-05-17
  • 出版日期:
文章二维码