基于深层神经网络的军事目标图像分类技术
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


Auto Target Classification Technology Based on Deep CNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人平台上自主发现目标功能的需求,结合深度学习方法,提出了一种军事目标图像分类技术思路,并且进行了模拟仿真。通过对六大类军事目标实验与测试,所提技术在特定训练库和特定像素图像的仿真验证中,识别精度和检测速度有所提高。

    Abstract:

    Aimed at demand of self discovery target function on unmanned platform, combined with deep learning method, an automatic military target classification method is proposed and simulated. Through experiment and test across six kinds of military targets, the proposed method has the advantages of accurate and fast classification and recognition, which can basically meet the demand of self discovery target function.

    参考文献
    相似文献
    引证文献
引用本文

惠国保.基于深层神经网络的军事目标图像分类技术[J].现代导航,2016,7(6):430-436

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-05-17
  • 出版日期:
文章二维码