基于多重支持向量模型的雷达目标识别器设计
DOI:
CSTR:
作者:
作者单位:

作者简介:

李龙(1988-),辽宁锦州人,博士,主要研究方向:雷达信号处理,雷达目标识别,机器学习

通讯作者:

中图分类号:

TN957

基金项目:


Design of Radar Target Recognition Based on Multiple Support Vector Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在如今日益复杂的地面战场环境下,雷达目标识别技术的需求愈加迫切。高分辨一维距离像(High Resolution Range Profile,HRRP)具有可提供目标在雷达视线上的结构信息的特点,使得其在雷达地面目标识别领域受到了广泛的关注与研究。为实现基于 HRRP 的雷达目标识别实用化,本文构建了一种基于多重支持向量模型的雷达目标识别器。本方法通过对目标特征空间的区域分割、特征区域描述与子分类超平面构建,得到更为精细化的目标特征空间描述,同时达到目标鉴别与分类的联合处理。此外,本方法基于支持向量模型,内存需求少、计算复杂度低, 适合目标识别系统的实际工程应用。通过基于实测数据的对比实验,证明了本文所提方法在目标识别性能与实时性两方面均具有较大的优势。

    Abstract:

    Due to the growing complexity of ground battlefield environment, the radar target recognition method has received intensive attention. Radar high resolution range profile (HRRP) has been widely used for practical target recognition system for its easy acquisition and low storage requirement. For radar HRRP recognition, two aspects are of great importance to improve the performance, i.e. discrimination for outlier and classification for inner. To tackle these issues, a novel target recognition method is designed, denoted by multiple support vectors method. First, a treble correlate support vector model is constructed to segment the feature space into two regions according to the density of feature vectors, then the description and classification hyper plane for each region are obtained. Based on the support vector framework, the computation complexity can be reduced significantly for practical radar HRRP recognition. Finally, the experiment based on the measured data verifies the excellent performance of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

李龙.基于多重支持向量模型的雷达目标识别器设计[J].现代导航,2019,10(1):45-50

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-05-17
  • 出版日期:
文章二维码