基于RRT算法的无人机路径规划应用研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

任鹏博(1995.02—),陕西咸阳人,硕士研究生,主要研究方向为信号检测与信号处理

通讯作者:

中图分类号:

V279

基金项目:


Research on UAV Path Planning Application Based on RRT Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    经典的路径规划算法大都需要在全局已知空间中对环境进行建模,包括人工势场法、 遗传算法、启发式算法、仿生学算法等。由于需要预先构建环境,因此这些方法并不适合解决在高维度空间中的路径规划问题。基于快速扩展随机树(RRT)的路径规划方式其优势在于可以避免对全局环境的构建,通过对状态空间进行随机采样,检测碰撞点,能够有效地解决在平面及三维状态空间下的复杂路径规划问题。通过与人工势场法和 A*算法进行比对,确定了 RRT 算法在复杂环境中解决无人机路径规划问题的优势,在对相关参数进行优化后该方法是概率完备且存在最优解的,同时在固定翼智能集群飞行编队控制及协同项目中应用。

    Abstract:

    Traditional global path planning algorithms include artificial potential field method, genetic algorithm, intelligent bionics algorithm, heuristic algorithm and so on. However, these methods all need to model obstacles in the known global space, and are not suitable for solving the planning problem of multi-degree-of-freedom robots in complex environments. The path planning algorithm based on rapidly exploring random tree, through the collision monitoring of sampling points in the state space, avoids the modeling of the global space, and can effectively solve the path planning problems of high-dimensional space and complex constraints. By comparing with the artificial potential field method and the A*algorithm, the advantages of the RRT algorithm in solving the UAV path planning problem in a complex environment is determined in the paper. After optimizing the relevant parameters, the method is probabilistic and has an optimal solution, and applied in the Fixed-wing intelligent cluster flight formation control and coordination project at the same time.

    参考文献
    相似文献
    引证文献
引用本文

任鹏博,董泽华.基于RRT算法的无人机路径规划应用研究[J].现代导航,2022,13(1):62-66

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-05-07
  • 出版日期:
文章二维码