基于激光雷达感知的无人机自主避障3DVFH改进算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

吉彦蓉(1994.07—),甘肃兰州人,硕士,主要研究方向为雷达、无人机避障、信息化弹药。

通讯作者:

中图分类号:

TN974

基金项目:


Improved 3DVFH Algorithm for Autonomous Obstacle Avoidance of UAV Based on LiDAR Perception
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统无人机避障算法通过视觉传感器基于八叉树地图(Octomap)构建全局地图,会产生较大存储量,难以满足工程需要。基于三维向量直方图(3DVFH)做出改进,只需构建局部地图,但该方法不考虑先前的数据或操作,易造成行为不稳定和局部最小值。针对以上问题,提出基于增强3DVFH的自主局部避障算法,将全局地图直接替换为使用激光雷达提供的三维点云地图,同时设计一种价格较低的计算内存策略来减轻局部方法的固有问题。经试验验证,有效地提升了环境感知的效率与存储量,有助于更好地进行无人机自主避障。

    Abstract:

    Traditional obstacle avoidance algorithm of Unmanned Aerial Vehicle (UAV) constructs the global map based onOctomap by visual sensor, which will produce large storage and is difficult to meet the engineering needs. The improvedalgorithmbased onThree-Dimensional Vector Histogram (3DVFH) only needs to construct a local map, but this method does notconsider previous data or operations, which can easily lead to unstable behavior and local minima. Regarding the above issues, anautonomous local obstacle avoidance algorithm based on enhanced 3DVFH is proposed, which directly replaces the global map witha 3D point cloud map provided by LiDAR, and a low-cost computational memory strategy to alleviate the inherent problems of localmethods is designed. Through experimental verification, it has effectively improved the efficiency and storage capacity ofenvironmental perception, which is conducive to better autonomous obstacle avoidance for UAV.

    参考文献
    相似文献
    引证文献
引用本文

吉彦蓉,袁子雄.基于激光雷达感知的无人机自主避障3DVFH改进算法[J].现代导航,2023,14(4):297-302

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-21
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-12
  • 出版日期:
文章二维码