基于改进3DVFH的激光雷达的无人机自主避障算法
DOI:
CSTR:
作者:
作者单位:

中国电子科技集团公司第二十研究所

作者简介:

通讯作者:

中图分类号:

基金项目:


Autonomous obstacle avoidance algorithm for LIDAR of UAV based on improved 3DVFH
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统无人机避障方法是通过Octomap(八叉树)地图形式建立环境的全局地图,然后进行自主避障,该方法会产生很大的计算量和存储量,无法满足工程的需要。基于3DVFH(三维向量直方图)的自主避障算法无需构建全局地图,仅实时构建激光雷达传感器当前位置的局部地图,提升了计算效率,但不考虑先前时间步长中的任何数据或操作,这通常会导致行为不稳定和局部最小值。本文提出基于增强3DVFH的自主局部避障算法,将全局地图直接替换为使用激光雷达提供的3D点云,同时设计一种价格较低的计算内存策略来减轻局部方法的固有问题。经试验验证,有效地提升了环境感知的效率与存储量,有助于更好地进行无人机自主避障。

    Abstract:

    Traditional obstacle avoidance method of UAV is to establish a global map of the environment in the form of an Octomap, and then perform autonomous obstacle avoidance. The autonomous perception obstacle avoidance algorithm based on 3DVFH (three-dimensional vector histogram) does not require the construction of a global map, only real-time construction of a local map of the current position of the LiDAR sensor, improving computational efficiency. However, it does not consider any data or operations in previous time steps, which usually leads to unstable behavior and local minima. This article proposes an autonomous local obstacle avoidance algorithm based on enhanced 3DVFH, which directly replaces the global map with a 3D point cloud provided by LiDAR, and designs a low-cost computational memory strategy to alleviate the inherent problems of local methods. Through experimental verification, it has effectively improved the efficiency and storage capacity of environmental perception, which is conducive to better autonomous obstacle avoidance for UAV.

    参考文献
    相似文献
    引证文献
引用本文

吉彦蓉,袁子雄.基于改进3DVFH的激光雷达的无人机自主避障算法[J].现代导航,2023,14(4):

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-23
  • 最后修改日期:2023-05-11
  • 录用日期:2024-10-31
  • 在线发布日期: 2024-10-31
  • 出版日期:
文章二维码