基于Attention-YOLOv3的海面舰船目标检测
DOI:
CSTR:
作者:
作者单位:

91001部队

作者简介:

通讯作者:

中图分类号:

基金项目:


Object Detection of Surface Ships Based on Attention-YOLOv3
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前基于深度学习的视觉检测方法在海面舰船目标检测领域中的应用愈加广泛。在经过对主流的one-step与 two-step模型结构及特点的调研分析的基础上,为了进一步提高舰船目标的检测性能,利用主流的YOLOv3的特征提取网络DarkNet50来获取图像特征,通过FPN网络结构融合特征提取网络中深浅层的语义信息,并添加注意力机制模块来进一步优化网络性能。将改进后的Attention-YOLOv3模型应用到海面舰船检测之中,将搜集到的舰船目标制作成coco格式的数据集,并进行训练,使用包含海面舰船目标的图片作为测试集进行测试。实验结果表明:改进后的Attention-YOLOv3网络对比于原检测网络模型,具有更强的模型健壮性和更高的检测精度。

    Abstract:

    At present, the visual detection method based on deep learning is more and more widely used in the field of surface ship target detection. Based on the investigation and analysis of the structure and characteristics of the mainstream one-step and two-step models, in order to further improve the detection performance of ship targets, the mainstream YOLOv3 feature extraction network DarkNet50 is used to obtain image features, and FPN is added. The network structure fuses features to extract the deep and shallow semantic information in the network, and adds an attention mechanism module to further optimize the network performance. The improved Attention-YOLOv3 model is applied to the detection of ships on the sea surface, using the collected coco format ship target data set for training, and using the images in the actual scene for testing. The experimental results show that the improved Attention-YOLOv3 network has better performance and higher recognition accuracy than the original detection network model.

    参考文献
    相似文献
    引证文献
引用本文

闫婕妤,王文博,郝延彪,施春强.基于Attention-YOLOv3的海面舰船目标检测[J].现代导航,2023,14(4):

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-01
  • 最后修改日期:2023-06-01
  • 录用日期:2024-03-06
  • 在线发布日期: 2024-03-13
  • 出版日期:
文章二维码