基于超球体单形采样的改进UKF算法在飞机进场定位中的应用
DOI:
CSTR:
作者:
作者单位:

1 西安导航技术研究所,西安 710068 ; 2.陕西省组合与智能导航重点实验室,西安 710068 ; 3.中国人民解放军 93216 部队,北京 100085

作者简介:

芦鑫元(1994.04—),陕西咸阳人,硕士,工程师,主要研究方向为无线电导航。

通讯作者:

中图分类号:

TN961

基金项目:


Application of Improved UKF Algorithm Based on Hypersphere Simplex Sampling in Aircraft Approach Position
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    面向飞机进场引导定位能力提升需求,针对伪卫星测量波动和定位解算运算量庞大的问题,提出了一种基于超球体单形采样策略的改进自适应无迹卡尔曼滤波(IAUKF)算法,首先引入自适应因子调节状态预测信息和量测信息在滤波解算中的权值比,在减少 Sigma 采样点数量的同时,提高了滤波稳定性;然后通过模糊推理系统(FIS)在线实时调整的方法进行时变测量噪声估计,提升了定位精度。仿真验证了滤波的收敛性和有效性,所提出的算法能够在减小用户接收机运算量的同时为飞机进场提供高精度定位服务。

    Abstract:

    The paper is aimed at the demand for the improvement of the aircraft approach guidance and positioning ability. In response to the problems of the pseudolites measure fluctuations and a large amount of positioning calculation, an improved Unscented Kalman Filter (UKF) algorithm based on the hypersphere simplex sampling strategy is proposed. Firstly, an adaptive factor is introduced to adjust the weight ratio of the state prediction information and the measurement information in the filtering solution. While reducing the number of Sigma sampling points, the filtering stability is improved. In addition, the time-varying measurement noise is estimated through the method of online real-time adjustment by the Fuzzy Inference System (FIS), which enhances the positioning accuracy. The simulation verifies the convergence and effectiveness of the filtering algorithm. The proposed algorithm in the paper can provide high-precision position service for aircraft approach process.

    参考文献
    相似文献
    引证文献
引用本文

芦鑫元,王雪冬,谢勇.基于超球体单形采样的改进UKF算法在飞机进场定位中的应用[J].现代导航,2025,16(3):167-172

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-17
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-10-13
  • 出版日期:
文章二维码